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ABSTRACT 

We use the methods of the renormalization group to analyze the 

behavior of all Reggeon proper vertex functibns in a Reggeon field theory 

when all angular momenta are near one or all Reggeon momenta are 

small. This behavior is governed by an infrar,ed stable Gell-Mann - Low 

zero which arises when the triple Pomeron coupling is imaginary. A 

renormalized trajectory must be singular at t=O, and a variety of scaling 

laws for the vertex functions are obeyed. Coupling particles to the Reggeons 

and using the scaling laws we find to high accuracy that cT (,Q) y ‘/6, 

Ll- B/(~~p+**~] where A factorizes. 
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The Reggeon c&lculus developed by Gribov’ several years ago provides 

a constructive method to establish the contributions of multi-Reggeon cuts 

to two-to-two amplitudes which automatically satisfy the discontinuity 

relations2 across those cuts. In this note we will indicate how one may 

use renormalization group techniques developed in the context of relativistic 

quantum field theory3 to sum,in the Reggeon field theory,all the Reggeon 

cuts for the vacuum trajectory with c@)=i in the neighborhood of small 

Pomeron energy (E=l - 1) or small Pomeron momenta, ‘2, t =-Kj7 

We study a model of particular physical interest: linear trajectories 

for non-interacting Pomerons and a triple Pomeron coupling only. Our 

methods are clearly applicable to a much richer class of Reggeon field 

theories; many of these are being considered now. 

We proceed by choosing the non-interacting Pomeron to have the [energy 

momentum relation 

where the intercept o&(0)=4. This represents the Pomeron as a non-relativistic 

quasi-particle with no energy gap. The action which yields (1) is 

(2) 

geon field in D space and one time dimension. Physics 

takes place at D=2, but it will be both convenient and instructive to have D 

at our:disposal. We choose the interaction Lagrangian 

(3) 
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where ro is the bare triple Pomeron coupling. The imaginary nature of this 

coupling follows from Gribov”s 
I signature analysis of Reggeon graphs. 

The quantities of interest to us are the renormalized proper vertex 

functions for n incoming and m outgoing Pomerons. The unrenormalized 
b,d 

functions FU depend o&the Ei and gi of the Pomerons and the 

parameters 0$, ro, and a possible cutoff A D The renormalized functions 

rdhln, 
depend on renormalized quantities 4’) r, and a renormalized 

intercept 4 (0) 0 Choosing St(o) =I, as we do, corresponds to a massless 

theory, and we thus need a parameter to give us a normalization point for 
h ‘d 

the r~ o To stay away from cuts we normalize at zero momenta c:, but 

Ei a -EN, with EN> 0. In particular we choose to normalize the vertex 

functions by the following conventions: 

(4) 

B 
1 

-- 0 \ - 

r w> Since R is the inverse propagator, this guarantees that renormalized 

Pomeron singularities, whatever their analytic nature, occur at 1=1, t=O. 

Also we require: 

(5) 

(6) 
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and 

= 

E,=E,=-EM = E,! 
$c=o a a 

These conditions define the renormalized quantities 4’ and r in terms of 

which all (h,m) rR will be parametrized. 

T-here is one more useful observation. Taking into account that ?and t 

are dimensionally distinct in this non-relativistic theory, we find it useful 

to eliminate r(EN) in terms of the dimensionless coupling 

The special role that D=4 will play emerges here. 

The renormalized and unrenormalized vertex functions are related by 

Noting that v is independent of EN yields the crucial equation of the 

and 
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Ordinary dimensional analysis allows us to turn (10) into an equation for 

whose solution 

determines m in terms of effective slope and coupling parameters which 

If we were to know p, < , and p , then we could study the rR 

(37) 

as the 

Ei vary for fixed zi. Alas, this is tantamount to solving the full field theory. 

So we are only able to know these functions in perturbation theory in g. We 

shall proceed by studying (IS), (16), and (17) using pj g ) and $ in lowest 

order perturbation theory. We find 

(19) 

(20) 

where K and “K are positive constants for 2&D!%. From (20) we see that 

has a zero at 
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and p’~JA)70. The general analysis 3 tells us that this zero governs the C-30 

(infrared) behavior of & . 

This is a key result: p(g) has an infrared stable zero which for DS4 

occurs at small renormalized coupling. This suggests a perturbation theory 

in e =4-D akin to the E -expansion3 of statistical mechanics. The imaginary 

character of the triple Pomeron coupling is crucial in this. The functions 4 
and 3 are to order E 

Y 
z - 

QL) 
(22) 

(23) 

indicating that even at D=2, where 6 =2, we are keeping terms in an 

expans ion in small parameters 0 

Given a zero at g, we can use dimensional analysis again to determine 

the general form of pR allowed for Ei small, fixedzi. We find in this regime 

(24) 
2? 

with E= $.,Ei and ~~ 
where cd-and e.+ are two constants which each equal one at g=glIand + ‘:n,M 

remains undetermined at this stage. 

Now we have our first important result. If $ ho has a zero which moves 
+a 

with k , it must yield a trajectory 

(25) 
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with f undetermined. In general 4(t) will not be analytic at t =O. In our & 

perturbation theory 2 =I + “/qq , so the trajectory function vanishes less 

rapidly than the non-interacting linear trajectory. In a naive fashion this 

eliminates the necessity for the vanishing at t =O of the triple Pomeron 

coupling measured in inclusive processes. 
4 

Nevertheless, if we examine 

5 9 
0,al the renormalized triple Pomeron vertex, it does vanish, albeit 

non-linearly, as Ei+ 0, ci+ 0. All discussions proceeding from an analytic 

vanishing of this vertex function would seem to merit re-examination. 

If we carry out the E perturbation expansion, we can determine the 

function +,,, in (24), for example, as a power series in & by comparison 

with the renormalized propagator evaluated to second order in g. Writing 

+eJ 
,,1 ,E where 

(26) 

we find 

yielding a Pomeron pole with trajectory 

(28) 

Now we wish to couple particles into the theory. We do this by allowing 

two particles to emit n Reggeons with a strength NnO The contribution to 

the particle partial wave amplitude F(E,3) coming from n Reggeons emitted, 

interacting in all possible ways, and producing m Reggeons which are then 

absorbed is 



with (n’ m)(E ‘2 
% 1’ I’ “I E X n+m’ n+m 

) the full renormalized Green’s function. 

Using the scaling properties above we discover 

yielding an elastic amplitude 

(31) 

On utilizing (22) and (23) and evaluating at D=2, we have an expansion in 

and a total cross section for A+B + anything 

(32) 

(33) 

where we have noted that the leadins term factorizes. 

The results presented here will be extensively elaborated on in a paper 

now in preparation. Let us comment on the achievements of this work. Our 

results are reminiscent of the Gribov-Migdal “strong coupling” solution of 
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the interacting Pomeron problem! However, there are significant differences. 

Our I-$“’ vanishes faster than linearly in E at ?? =O, whereas theirs vanishes 

slower D We have a positive total cross section; they do not. The strongest 

conclusion we can draw from our work is that a “weak coupling” solution to 

the Pomeron problem would seem to be ruled out. That is, the Pomeron 

trajectory cannot be linear near t=O when Pomeron interactinns are taken 

into account. This renders all decoupling theorems6for the Pomeron of 

little interest. The most amusing possibility suggested by our procedures 

is a constructive perturbation expansion in the dimensions of (Reggeon) 

space around D=4 which yields the various proper vertex functions to 

high accuracy. 

We wish to acknowledge extensive conversations with B. W. Lee and 

A. R. White during the course of this work. M. Baker has informed us 

that K. A. Ter-Martirosyan, A. A: Mgdal, and A. M. Polyakov have also 

discovered several of the important results presented here. 
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